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Summary. The case-cohort design for longitudinal data consists of a subcohort sampled at the beginning
of the study that is followed repeatedly over time, and a case sample that is ascertained through the course
of the study. Although some members in the subcohort may experience events over the study period, we
refer to it as the “control-cohort.” The case sample is a random sample of subjects not in the control-
cohort, who have experienced at least one event during the study period. Different correlations among
repeated observations on the same individual are accommodated by a two-level random-effects model. This
design allows consistent estimation of all parameters estimable in a cohort design and is a cost-effective
way to study the effects of covariates on repeated observations of relatively rare binary outcomes when
exposure assessment is expensive. It is an extension of the case-cohort design (Prentice, 1986, Biometrika 73,
1–11) and the bidirectional case-crossover design (Navidi, 1998, Biometrics 54, 596–605). A simulation study
compares the efficiency of the longitudinal case-cohort design to a full cohort analysis, and we find that in
certain situations up to 90% efficiency can be obtained with half the sample size required for a full cohort
analysis. A bootstrap method is presented that permits testing for intra-subject homogeneity in the presence
of unidentifiable nuisance parameters in the two-level random-effects model. As an illustration we apply the
design to data from an ongoing study of childhood asthma.

Key words: Biased sampling; Cohort study; Correlated binary data; Nested random-effects model.

1. Introduction
In some epidemiologic investigations, the most expensive part
of the study is not in ascertaining subjects, but in measuring
their exposures and predictors of interest. This is the case in
the example that motivated this article, the Home Allergen
Study of childhood asthma, consisting of approximately 500
children, who were recruited as newborn infants, and are fol-
lowed prospectively (for details see Gold et al., 1999). The
main objective of the study is to assess the role of immune
function in impacting asthma risk directly, and in modify-
ing the risk associated with various environmental exposures.
Immune function is generally assessed through biomarkers,
such as cytokine proliferation levels, measured in cord blood
samples that can be archived for later assaying. Because the
assessment of these biomarkers is very expensive and labor in-
tensive, the development of cost-effective subsampling strate-
gies is highly desirable.

We propose a case-cohort design for longitudinal data as
a cost-effective way to study the effects of covariates on re-
peated observations of relatively rare binary outcomes. Our
design entails choosing a random subcohort at the beginning
of the study and following the subjects in this subcohort re-
peatedly over time. Although some members in this random
subcohort may in fact experience the events of interest over

the course of the study, we refer to them as the “control-
cohort” for simplicity. In addition to the control-cohort we
obtain a “case sample,” a random sample of subjects not in
the control-cohort, who have already experienced at least one
event during the study period.

The case-cohort design introduced by Prentice (1986),
closely related to designs proposed earlier by Kupper,
McMichael, and Spirtas (1975) and Miettinen (1982), also
involves collecting covariate data only for cases experienc-
ing the event of interest in a cohort and for members of a
randomly selected subcohort. This design is based on the
observation that for rare outcomes the efficiency of relative
risk estimation for the Cox proportional hazards model is
largely constrained by the total number of cases. Aside from
our extension to longitudinal data, we limit our observations
to a random subset of the cases, whereas the standard case-
cohort design observes all cases occurring in the cohort. As the
margins, that is, the number of cases and controls that is be-
ing analyzed, are not fixed, and some of the subjects who
were previously ascertained as controls can actually experi-
ence events later on in the study, we can estimate the absolute
risk of the event of interest in the population at large, similar
to the nested case-control approach (Langholz and Borgan,
1997).
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The longitudinal case-cohort design also extends the bidi-
rectional case-crossover design introduced by Navidi (1998).
This design generalizes the standard case-crossover design
(Maclure, 1991), where only cases with a single failure time
are ascertained from a cohort. In the original case-crossover
design each subject is considered to be a stratum in a case-
control study, the failure times represent the cases, and the
other times are the controls. Inference proceeds by conditional
logistic regression with exposures at the case times compared
with exposures at the control times. Control time can only
be time that precedes the event, which can lead to confound-
ing by time trends in the exposure. The bidirectional case-
crossover design circumvents this problem by comparing ex-
posures at failure with exposures before and after failure. In
addition, multiple failure times can be dealt with by condi-
tioning on the exact number of events a person experiences in
the study period, which limits one to estimating only time-
varying covariates. By introducing a control-cohort and allow-
ing for different correlations between the observations taken
on the same individual, we can estimate the effects of expo-
sures that are constant for a subject as well as the effects of
time-varying covariates. In fact, our design allows for estima-
tion of all parameters that would be estimable based on a
longitudinal cohort design.

In Section 2, we derive the likelihood for the proposed lon-
gitudinal case-cohort design. In Section 3, we propose a score
test to test for the necessity to model intra-individual correla-
tions. In Section 4, we assess the performance of the estimates
of covariate effects in a simulation study and compare their
efficiency to those of estimates based on a full cohort analy-
sis. Data from the ongoing Home Allergen Study are used to
illustrate our proposed design in Section 5. We conclude with
a discussion of our results in Section 6.

2. Data and Model
Assume that individuals are ascertained during a fixed time
period from a cohort at risk, and that events can occur at any
of the fixed T time points t1, . . . , tT . Let Yit , i = 1, . . . , n, t
= 1, . . . , T , represent the binary outcome of individual i at
time t, with Yit = 1 if the ith individual experienced an event
at time t and Yit = 0 otherwise. Covariates are denoted by Xit

and may include components that are either time varying or
independent of time.

The data consist of two parts: a control-cohort, that is a
random sample of size n 0 of the population chosen at t =
0 and followed forward in time, and a so-called “case sam-
ple.” The latter is a random sample of individuals who were
not selected as part of the control-cohort, and who experi-
enced at least one event during the course of the study. Once
a case is ascertained into the study, the exposure history up
to the time of the event is reconstructed, and from the event
time on, the case is followed forward in time. This is a rea-
sonable sampling scheme if specimens are stored at baseline
and are available for later evaluation.

2.1 The Random-Effects Model
The probability pit that individual i in the cohort has an event
at time t follows the logistic model

logit (pit) = logitP (Yit = 1 | ai, git,Xit)

= µ + σaai + σggit + βXit. (1)

The random effect ai models individual-specific effects that
are common to all time points while the random effects git ’s
allow the observations for each individual to be differently
correlated. The ai are assumed to be independent and iden-
tically distributed (i.i.d.) with E(ai ) = 0 and var(ai ) = 1.
The ai are also assumed to be independent of the git ’s, which
have mean 0, variance 1, and are serially correlated for the ith
individual. For many longitudinal settings, it might be desir-
able to assume that the g’s arise from a stationary AR(1)
process (see, for example, Brockwell and Davies, 1991, p.
79). This means that git = γgi(t−1) + εit, where the εit ’s are
i.i.d. and have an N(0, σ2

ε) distribution, |γ| ≤ 1, and gi0 ∼
N(0, σ2

ε/(1 − γ2)). Under this model, and for equally spaced
time points, the g’s have a normal distribution with mean 0
and, using σ2

g = σ2
ε/(1 − γ2) in (1), correlation matrix

Σg =




1.0 γ γ2 γ3 · · · γT

γ 1.0 γ γ2 · · · γT−1

γ2 γ 1.0 γ · · · γT−2

...
...

...
. . .

...
...

γT γT−1 γT−2 γT−3 · · · 1.0




. (2)

This parameterization also allows for different numbers of ob-
servation for different individuals without affecting the di-
mensionality of the parameter space. For irregularly spaced
time points the correlation matrix (2) can be adjusted accord-
ingly. The autoregressive model allows for a rich dependence
structure: large positive values of γ induce gradual changes in
the probability of an event over time, while for γ close to 0 the
observations of a subject are nearly independent. Stationarity
is a desirable property, as it guarantees that all the git ’s have
the same variance.

Model (1) has a two-level structure and was used by
Pfeiffer, Gail, and Pee (2001) to model family data, with a
covariance structure determined from the relationships of the
family members. It is an extension of the widely used random-
effects model that allows for a cluster-specific intercept ai , but
assumes that the Yit ’s are conditionally independent, given ai

and the measured Xit (see, for example, Neuhaus, Kalbfleisch,
and Hauck, 1991). Diggle, Liang, and Zeger (1994, Chapter
9) presented similar generalized linear mixed models for ex-
ponential families with canonical links. Albert et al. (2002)
used a Gaussian process with mean 0 and an exponential co-
variance structure, Cov(git , git′) = σ2

g exp(− θ |t− t′|), in an
informative missing data model to allow for different correla-
tions among observations on the same individual.

The marginal probability of the response for the ith indi-
vidual under the logistic model (1) is

P (Yi1, Yi2, . . . , YiT |Xi1, . . . ,XiT ) =

∫ ∏
t

pyitit q1−yit
it dF (a, g),

(3)

where qit = 1 − pit .

3. Estimation and Inference
3.1 Derivation of the Scores
Each subject in the control-cohort is sampled randomly from
the cohort and contributes the probability (3) to the likeli-
hood. The case sample on the other hand is comprised of
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subjects who experienced at least one event during the course
of the study. Inference must appropriately account for this
sampling mechanism. As discussed by Zhao and Lipsitz (1992)
in the context of two-stage designs, there are several possible
approaches. We extend the conditional-likelihood approach,
which involves specifying the conditional distribution of the
observed data, given that the subject was ascertained. Let
Yi. =

∑T

t=1 Yit denote the total number of events individual
i experiences during the study period. By applying Bayes’
theorem, the conditional distribution for such an ascertained
case i can be written as

P (Yi1, Yi2, . . . , YiT |Xi1, . . . ,XiT , Yi. ≥ 1)

=
P (Yi1, Yi2, . . . , YiT , Yi. > 0 |Xi1, . . . ,XiT )

P (Yi. ≥ 1 |Xi1, . . . ,XiT )

=
P (Yi1, Yi2, . . . , YiT , Yi. > 0 |Xi1, . . . ,XiT )

1 − P (Yi. = 0 |Xi1, . . . ,XiT )

=

∫ T∏
t=1

pyitit q1−yit
it dF (a, g)

1 −
∫ T∏

t=1

qit dF (a, g)

. (4)

The case-cohort thus arises from a truncated mixed distribu-
tion. The probability that a case is sampled does not depend
on the exact number of events a case experienced, but only
on whether the person had at least one event.

Combining the scores for the control-cohort and for the
case-cohort yields the log likelihood

ln l(Y ;θ) =

n0∑
i=1

ln

[∫ T∏
t=1

pyitit q1−yit
it dF (a, g)

]

+

n1∑
i=1

ln




∫ T∏
t=1

pyitit q1−yit
it dF (a, g)

1 −
∫ T∏

t=1

qit dF (a, g)


 , (5)

where θ = (β, σ2
a, γ, σ2

g), and pit = pit(θ, Xit). Conceptu-
ally, this likelihood can be viewed as the combined likelihood
from two separate studies. Suppose that the original cohort is
split randomly into two parts. The first part gives rise to the
control-cohort, and the case-cohort is a random sample of the
cases of the second part. Combining both likelihoods yields
(5).

To derive the asymptotic distribution of the estimates, de-
note the scores for the control-cohort by

Ui(θ) =
∂

∂θ′ ln

[∫ T∏
t=1

pyitit q1−yit
it dF (a, g)

]

and the scores for the case-cohort by

U+
i (θ) = ∂

∂θ′ ln

[∫ T∏
t=1

pyitit q1−yit
it dF (a, g)

/
(

1 −
∫ T∏

t=1

qit dF (a, g)

)]
.

The estimator θ̂ then solves

U(θ) =

n0∑
i=1

Ui(θ) +

n1∑
i=1

U+
i (θ) = 0.

Consistency of the estimates follows as EY Ui (θ)= 0 and
EY U+

i (θ) = EY.EY |Y.Ui(θ) = 0 and thus the expected value
of the combined scores is 0. The terms Ui and U+

i are in-
dependent but not identically distributed, thus we use the
Lindeberg–Feller theorem to derive asymptotic normality of
the estimates. As n0, n1 → ∞ such n1/n0 → φ, using standard
Taylor expansion,

n
1/2
0 (θ̂ − θ) = −n0

[
n0∑
i=1

∂

∂θ′Ui(θ) +

n1∑
j=1

∂

∂θ′U
+
j (θ)

]−1

×n
−1/2
0

[
n0∑
i=1

Ui(θ)+

n1∑
j=1

U+
j (θ)

]

+ op(1) → N(0, A−1B(A−1)T).

The pieces of the asymptotic variance are A = E[ ∂
∂θ ′U(θ)] +

φE[ ∂
∂θ ′U

+(θ)], estimated by

Â =
1

n0

[
n0∑
i=1

∂

∂θ′Ui(θ) +

n1∑
i=1

∂

∂θ′U
+
i (θ)

]

and B = E[U(θ)U ′(θ)] + φE[U+(θ)U+′
(θ)], estimated by

B̂ =
1

n0

[
n0∑
i=1

Ui(θ)U ′
i(θ) +

n1∑
j=1

U+
j (θ)U+′

j (θ)

]

evaluated at θ = θ̂.
We will discuss computational issues relating to our model

after making some general comments. To derive the probabil-
ity distribution for the cases in the sample, we conditioned on
the exact ascertainment, namely that a case in the case-cohort
experienced at least one event. Alternatively, one could con-
dition on a slightly stronger condition, the exact number of
events, and find P (Yi1, Yi2, . . . ,YiT | Xi1, . . . ,XiT ,Yi.) instead
of P (Yi1, Yi2, . . . ,YiT | Xi1, . . . ,XiT , Y i. ≥ 1). In the absence
of the random effects git (i.e., git = 0 for all i, t), this would
lead to standard conditional logistic regression, as Yi. is the
sufficient statistic for the individual-specific intercept µ + ai ,

P (Yi1, Yi2, . . . , YiT |Xi1, . . . ,XiT , Yi.)

=
P (Yi1, Yi2, . . . , YiT , Yi. |Xi1, . . . ,XiT )

P (Yi. |Xi1, . . . ,XiT )

=

exp

(
β

∑
tj∈Ai

Xitj

)

∑
S∈DYi.

exp

(
β

∑
tj∈Ai

Xitj

) , (6)
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where Ai is the set of times at which failures occur. In the
presence of the git ’s no such simplification occurs, as can be
seen from (4). In addition, evaluation of (6) will be compu-
tationally more complicated than expression (4), as there are
T !/[Yi.! (T − Y i.)!] summands in the denominator.

In the bidirectional case-crossover design (Navidi, 1998),
the likelihood contribution of an individual corresponds to
(6), and is based on the assumption that the individual fail-
ure times are independent, given the covariates. Note also
that based on the conditional probability (6), only individ-
uals who had events at some but not all time points con-
tribute to the likelihood, while everybody contributes based
on the truncated version (4). O’Neill and Barry (1995) com-
pare truncated logistic regression with conditional logistic re-
gression and favor the former because it yields more efficient
estimates and allows for estimation of cluster-level effects.
However, they use the rather strong assumption that the lo-
gistic regression intercept is the same from cluster to cluster.
This assumption is relaxed in our model by introducing the
cluster-level random effect a. By dealing with truncated logis-
tic regression instead of conditional logistic regression, it is in
principle possible to estimate µ and σa from the case-cohort
alone as these parameters do not cancel out of the likelihood
(4) even when all the g’s are 0. One would expect a case-only
sample to contain very little information on these parameters
however, which makes their estimation unstable. By adding
the control-cohort we stabilize estimates for µ and σa .

3.2 Numerical Methods for the Random-Effects Model
Estimation of the parameters in our model shares many of the
computational difficulties associated with generalized linear
mixed models (see, for example, Breslow and Clayton, 1993),
as evaluating high-dimensional integrals is required.

We estimate the parameters of the likelihood by direct max-
imization, and evaluate the integrals in (5) by Monte Carlo
integration (see Tanner, 1993, p. 30). For the ith individ-
ual in the data set, we draw N independent, identically dis-
tributed samples aik , k = 1, . . . ,N , from a standard normal
distribution, and independent, identically distributed g∗

k =
(g∗ik1, . . . , g

∗
ikT ), k = 1, . . . ,N , from a multivariate normal dis-

tribution with mean vector 0 and identity correlation matrix.
For each iteration in the maximization, we then compute gk =
Σ

1/2
g g∗

k to obtain random effects with correlation matrix (2)
and use the approximation

∫ T∏
t=1

pit(ai, gi1, . . . , giT )yitqit(ai, gi1, . . . , giT )1−yit dF (a, g)

≈ 1

N

N∑
k

T∏
t=1

pit(aik, gik1, . . . , gikT )yit

× qit(aik, gik1, . . . , gikT )1−yit

for individuals sampled into the control-cohort. Integrals in
the conditional likelihood (4) for individuals sampled into
the case-cohort are evaluated the same way, with the same
Monte Carlo sample used for the numerator and denomina-
tor to ensure that the conditional likelihood is smooth in β.
Different individuals are evaluated using independent Monte
Carlo samples. The advantage of Monte Carlo integration over

Gaussian quadrature is that required computations increase
only linearly with the dimension of the integral, while the nu-
merical effort for Gaussian quadrature increases exponentially
with the dimension of the integral. For the simulation study
we chose N = 500 and for the data example N = 1000.

Another strategy to evaluate the integrals that was dis-
cussed by Raudenbush, Yang, and Yosef (2000) would be
the use of higher-order Laplace approximations. Raudenbush
et al. showed through simulations that approximating the log
likelihood by a sixth-order approximation was as accurate
as quadrature but considerably faster. Even though this ap-
proach seems very promising, it is rather complicated in our
situation, as the likelihood is composed of two different pieces.
For our purposes Monte Carlo integration is adequately ac-
curate, has acceptable computational speed, and is very easy
to implement.

3.3 A Score Test for Residual Correlation
We derive a score test to formally test H0 : σg = 0, that is,
to test whether the observations of an individual are indepen-
dent, given the covariates and the individual-specific intercept
ai . Tests of σg = 0 for this model can also be used as partial
goodness-of-fit tests.

The derivations follow a strategy developed by Liang (1987)
and extended by Commenges and JacqminGadda (1997).
First, we reparameterize pij using ν = σ2

g as

logit(pij) = logitP (Yij = 1 | ai, gij ,Xij)

= µ + σaai +
√
νgij + βXij .

The score statistic for ν for the ith individual in the control-
cohort evaluated at the null hypothesis is given by

Sν(Yj , θ,Xi)

= (∂/∂ν) ln {P (Yj1, Yj2, . . . , YjT |Xj1, . . . ,XjT )}| ν=0,

and the score for θ = (µ, σ2
a, β, γ) at ν = 0 is

Sθ(Yj , θ,Xj)

= (∂/∂θ) ln{P (Yj1, Yj2, . . . , YjT |Xj1, . . . ,XjT )}| ν=0,

while for an individual j in the case-cohort we have

S+
ν (Yi, θ,Xi)

= (∂/∂ν) ln{P (Yi1, Yi2, . . . , YiT |Xi1, . . . ,XiT , Yi. ≥ 1)}| ν=0,

and

S+
θ (Yi, θ,Xi)

= (∂/∂θ) ln{P (Yi1, Yi2, . . . , YiT |Xi1, . . . ,XiT , Yi. ≥ 1)}| ν=0.

Omitting the subject index for simplicity, S+
ν and Sν are found

by applying l’Hospital’s rule to be
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S+
ν (Y, θ,X)|ν=0 =∫ ∏

p
yk
k q

1−yk
k

{∑
j

[
(yj − pj)

2 − pjqj
]
+

∑
j

∑
k �=j

Egkgj(yj − pj)(yk − pk)

}
dFa

2

∫ ∏
p
yk
k q

1−yk
k dFa

−

∫ ∏
l

ql

{∑
i

piqi −
∑
k

∑
j �=k

pkpjEgkgj

}

2

(
1−

∫ ∏
qi dFa

)
and

Sν(Y, θ,X)|ν=0 =

∫ ∏
p
yk
k q

1−yk
k

{∑
j

[
(yj − pj)

2 − pjqj
]
+

∑
j

∑
k �=j

Egkgj(yj − pj)(yk − pk)

}
dFa

2

∫ ∏
p
yk
k q

1−yk
k dFa

.

The maximum likelihood estimates θ̂ under the hypothesis
that ν = 0 are computed numerically, as well as the derivatives
of Sθ and S+

θ . To fit the model with only the random effect
ai is considerably simpler, as in this case the likelihood (5)
involves only one-dimensional integrals, that can be evaluated
using Gaussian quadrature, for example.

Using standard likelihood theory, the combined score test
statistic for the control-cohort and case sample is

Tθ̂ =

(
n0 + n1

n0 + n1 − d

)−1/2

×
{

n0∑
i=1

Sν(Yi, θ̂) +

n1∑
j=1

S+
ν (Yj , θ̂)

}/
√
I, (7)

where d denotes the number of components of θ and the lead-
ing term is a correction factor for the degrees of freedom. The
denominator of the score test is given by

I =

n0∑
i=1

Iννi(θ̂) +

n1∑
j=1

I+
ννj(θ̂)

−
{

n0∑
i=1

Iνθi(θ̂) +

n1∑
j=1

I+
νθj(θ̂)

}

×
{

n0∑
i=1

Iθθi(θ̂) +

n1∑
j=1

I+
θθj(θ̂)

}−1

×
{

n0∑
i=1

I ′νθi(θ̂) +

n1∑
j=1

I+′
νθi(θ̂)

}

with

Iννi = E
[
S2
ν(Yi,θ) | ν = 0

]
,

Iνθi = E
[
Sν(Yi,θ)S ′

θ(Yi,θ) | ν = 0
]
,

Iθθi = E
[
Sθ(Yi,θ)S ′

θ(Yi,θ) | ν = 0
]
,

for the control-cohort, and I+
ννi, I

+
νθi, and I+

θθi defined simi-
larly for the case-cohort. In our problem the expectations are
too difficult to compute, and the expected Fisher information
is replaced by the observed Fisher information, for example,
Iννi = S2

ν(Yi , θ)|ν=0.
A difficulty is that under H0 the parameters in the distri-

bution of the g ′
it ’s are not identifiable, yet the test statistic

depends on them through Egigk . In our example, Egigk de-
pends on the parameter γ in the autoregressive model. While

Commenges and JacqminGadda (1997) circumvent this prob-
lem by assuming the covariance matrix of the random effects
is known, we modify an approach suggested by Davies (1977,
1987) for this situation. We now let θ = (µ, σ2

a, β) denote the
parameters that are identifiable under H0. Following Davies
(1977), we rewrite the test statistic in (7) as T θ(γ), and when
γ is unknown, replace it with

T ∗
θ = sup{Tθ(γ) : l ≤ γ ≤ u}

where [l, u] is the range of possible values of γ, in our setting
[l, u] = [−1, 1]. Under the assumption that T θ(γ) is continu-
ous on [l, u] with a continuous derivative except possibly for a
finite number of jumps, and T θ(γ) has a normal distribution
for every value of γ, that is, T θ(γ) is a Gaussian process in γ,
Davies derived the following upper bound as an approxima-
tion of the p-value of the test statistic:

P (supTθ(γ) > c : l ≤ γ ≤ u)

≤ Φ(−c) + exp(−1/2c2)

∫ u

l

{−ρ11(ν)}1/2 dν/2π,

where ρ11(γ) = [∂2ρ(φ, γ)/∂φ2]φ=γ and ρ(φ, γ) = corr{T θ(γ),
T θ(φ)} denote the autocorrelation function of T θ(γ).

Instead of the above upper bound, we propose a paramet-
ric bootstrap to obtain an approximate p-value of the test
statistic. The bootstrap for the longitudinal case-cohort de-
sign consists of the following steps:

1. Generate a bootstrap sample for the control-cohort
Y b

1 , . . . , Y
b
n0

and a bootstrap sample for the case sam-
ple Y b

1 , . . . , Y
b
n1

conditional on the covariates under H0

with θ = (µ, σ2
a, β) replaced by θ̂ estimated from the

original data under H0. That is, given the covariates Xit

generate outcomes from logitP (Yit = 1 | ai , git , Xit) =
µ + σaai + βX it . Note that each bootstrap sample
for the case sample needs to satisfy Yb

. ≥ 1, thus sev-
eral draws for a given covariate vector may be necessary
to ensure that the sample comes from the conditional
distribution.

2. Estimate θ̃b for the bootstrap sample under H0.
3. Compute T ∗

θ̃
= supTθ̃(γ) for γ ∈ [ −1, −0.95, , −0.9,

−0.85, . . . , 0.9, 0.95, 1.0].
4. Repeat steps 1–3 B times to obtain the bootstrap distri-

bution function of T ∗
θ under H0.
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We then use the jth-order statistic of the B bootstrap repli-
cations as an estimate of the j/(B + 1)st quantile. The test is
necessarily a one-sided test since the parameter value specified
by the null hypothesis is on the boundary of the parameter
space.

For comparison, the test statistic to test for resid-
ual correlation using the whole cohort of size n is
Tθ̂ =

∑n

i=1 Sν(Yi, θ̂)/(I)
1/2, with I =

∑n

i=1 Iννi(θ̂) −
{
∑n

i=1 Iνθi(θ̂)}{
∑n

i=1 Iθθi(θ̂)}−1{
∑n

i=1 I
′
νθi(θ̂)}. To find the

distribution of Tθ(γ) when γ is unknown, step one of the
bootstrap simplifies to resampling from the whole cohort for
computing θb .

4. Simulation Study
4.1 Estimation Results for the Longitudinal

Case-Cohort Design
We used simulated data to assess behavior and efficiency of
the estimates for the longitudinal case-cohort design. In the
simulated data sets we assumed equally spaced observation
times t1, . . . , t6 for all individuals. In model (1) we let β = 1,
with a time-varying covariate Xt from a Bernoulli distribu-
tion, that is, Xt ∈ {0, 1} with p = 0.5, and various choices for
values of µ, σa , γ, and σg . The random effects ai were normally
distributed with mean 0 and variance 1, and the random ef-
fects g were multivariate normal with mean 0 and correlation
matrix (2). The intercept parameters were µ = −2, −3, −4,
and −5. To put these values into perspective, note that among

Table 1
Comparison of efficiency of a full cohort analysis and the longitudinal case-cohort design for estimation of

θ = (µ, σ2
a, β, σ2

g , γ) based on 100 simulations (Monte Carlo sample size 500)

Case-cohort analysis Full cohort analysis

µ, σ2
a, β, σ2

g , γ mean (µ̂, σ̂a, β̂, σ̂
2
ε, γ) mean (µ̂, σ̂a, β̂, σ̂

2
ε, γ)

n0 = 200, n1 = 200 n = 800
−2, 1.0, 1.0, 1.0, 0.5 −2.17, 0.94, 1.09, 2.23, 0.56 −2.07, 0.80, 1.04, 1.71, 0.59
empirical standard errors 0.49, 0.98, 0.25, 2.73, 0.26 0.35, 0.74, 0.20, 1.56, 0.26
Efficiency 0.51, 0.57, 0.64, 0.33, 1.00
−3, 1.0, 1.0, 1.0, 0.5 −3.22, 0.95, 1.08, 1.93, 0.57 −3.10, 0.80, 1.04, 1.58, 0.62
empirical standard errors 0.65, 0.90, 0.22, 2.42, 0.28 0.46, 0.67, 0.17, 1.33, 0.26
Efficiency 0.50, 0.55, 0.60, 0.30, 0.86
−2, 1.0, 1.0, 2.0, 0.5 −2.08, 0.92, 1.05, 2.62, 0.57 −1.98, 0.71, 0.99, 2.23, 0.64
empirical standard errors 0.41, 1.01, 0.24, 2.10, 0.21 0.36, 0.91, 0.21, 1.94, 0.19
Efficiency 0.77, 0.81, 0.78, 0.85, 0.82
−3, 1.0, 1.0, 10.0, 0.9 −3.04, 2.12, 0.99, 9.70, 0.88 −3.03, 2.11, 0.99, 9.40, 0.87
empirical standard errors 0.39, 2.57, 0.18, 3.14, 0.08 0.27, 2.50, 0.15, 2.65, 0.06
Efficiency 0.49, 0.95, 0.71, 0.71, 0.56

n0 = 300, n1 = 300 n = 1200
−3, 1.0, 1.0, 5.0, 0.9 −3.03, 1.57, 1.01, 4.74, 0.87 −3.01, 1.47, 1.01, 4.63, 0.87
empirical standard errors 0.26, 1.59, 0.14, 1.49, 0.09 0.16, 1.45, 0.11, 1.39, 0.08
Efficiency 0.38, 0.83, 0.62, 0.87, 0.79

n0 = 400, n1 = 400 n = 1600
−4, 1.0, 1.0, 8.0, 0.9 −3.98, 1.79, 0.98, 7.14, 0.88 −3.99, 1.72, 0.98, 7.21, 0.88
empirical standard errors 0.33, 1.97, 0.11, 1.87, 0.07 0.21, 1.92, 0.10, 1.83, 0.07
Efficiency 0.41, 0.95, 0.83, 0.96, 1.00

n0 = 200, n1 = 200 n = 4000
−5, 1.0, 1.0, 1.0, 0.5 −5.20, 0.60, 1.04, 1.89, 0.61 −4.92, 0.50, 0.98, 1.34, 0.67
empirical standard errors 0.66, 0.65, 0.19, 1.53, 0.26 0.26, 0.48, 0.10, 0.67, 0.28
Efficiency 0.16, 0.55, 0.28, 0.19, 1.16

unexposed individuals, an intercept of µ = −2 corresponds to
a risk of disease of 119 per 1000, when there are no random
effects in the model, and µ = −3 to 47 per 1000. For σg = 1,
σa = 1, β = 0, and µ = −2 the disease prevalence is 185 per
1000, and for µ = −3 it is 92 per 1000.

We assessed the efficiency of the estimates, defined as the
ratio of the mean empirical variance estimates, of the case-
cohort design compared to a full cohort analysis (Table 1).
For each choice of parameters, we fit model (3) to all subjects
in the simulated cohort and then sampled a control-cohort
and a case sample and computed estimates based on the log
likelihood (5).

The longitudinal case-cohort design yielded nearly unbi-
ased estimates for β = 1 and near nominal 95% coverage of
β for likelihood-ratio-based confidence intervals (CIs) (data
not shown) for each of the parameter combinations studied
in Table 1. While µ was estimated without much bias and
reasonable precision as well, the estimates of σg and σa were
associated with large standard errors, and estimates of σg

had much larger coefficients of variation than estimates of
β. Likelihood-ratio-based confidence intervals for σ2

g and µ
had near nominal 95% coverage, but coverage was subnomi-
nal for σ2

a and γ. Unreported confidence intervals based on the
Wald statistic for β and σg had subnominal coverage. In many
applications however, the main interest lies in estimation of
β, and the random-effects parameters and µ will be of lesser
concern.
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Table 2
Actual rejections of the score test for H0 : σ2

g = 0 based on
the longitudinal case-cohort design for α = 0.05 with 100

bootstrap replications

n0, n1 µ, σ2
a, β, σ2

g , γ Rejection/total runs

200, 200 −5, 1.0, 1.0, 0.0, 0.0 0.03 (6/231)
200, 200 −2, 1.0, 1.0, 0.0, 0.0 0.07 (27/365)
200, 200 −3, 1.0, 1.0, 2.0, 0.5 0.22 (26/116)
200, 200 −3, 1.0, 1.0, 1.0, 0.5 0.18 (21/114)
200, 200 −2, 1.0, 1.0, 1.0, 0.5 0.10 (11/112)
200, 200 −3, 1.0, 1.0, 5.0, 0.9 0.37 (42/115)
200, 200 −3, 1.0, 1.0, 10.0, 0.9 0.93 (108/116)

For the settings in Table 1 where the total case-cohort sam-
ple size was 50% of the cohort sample size, the efficiency in
estimating β based on our design was at least 60%. For µ =
−2, σa = 1, σ2

g = 2, and γ = 0.5 the case-cohort design was
78% efficient for the estimation of β, and for µ = −4, σa = 1,
σ2
g = 0.8, and γ = 0.9 the estimates of β were 83% efficient

compared to a full cohort design with twice the sample size.
For the situation of a rare disease, with µ = −5, σa = 1,

σ2
g = 1, and γ = 0.5, and a cohort size that was 10 times larger

than the case-cohort sample, the efficiency of the estimates of
β was 27%, which corresponds to 2.7 times the efficiency per
sample.

Table 2 assesses the performance of the score test. For µ =
−5, σa = 1, and β = 2, the estimated size at σg = 0 of a nom-
inal 5% level test was found to be 3%, with 95% CI (0.005,
0.05); for µ = −2 and the other parameters unchanged, the
estimated size was 7% with 95% CI (0.047, 0.1). The power
of the score test was 0.22 for µ = −3, σ2

a = 1, γ = 0.5 and
σ2
g = 2 based on a sample of n0 = 200 and n1 = 200. For µ =

−3, σ2
a = 1, γ = 0.9, and σ2

g = 5 the power was 37%. When
the parameters changed to γ = 0.9 and σ2

g = 10, the power
increased to 93%. While σ2

g = 10 seems large, recall that σ2
g =

σ2
ε/(1 − γ2), and the above values of σ2

g = 10 and γ = 0.9
correspond to σ2

ε = 1.9, a reasonable value for the variance
in the AR(1) process that gives rise to the g ′

it ’s. In summary,
our results indicate that the score test only detects large de-
partures from the conditional independence assumption, that
is, the assumption that the observations of an individual are
independent, given the random intercept ai .

4.2 Robustness to Misspecification of the Individual-Level
Random Effects

Although model (1) accounts for different correlations among
observations from the same individual, one needs to spec-
ify the distribution of the random effects git . Hartford and
Davidian (2000) investigated violations of the assumptions
of normality of the random-effects distribution in nonlinear
mixed-effects models via simulations, using first-order expan-
sions and Laplace approximations to evaluate the integrals.
Due to the ascertainment correction for the case-cohort, our
likelihood does not fall into any of the standard mixed effects
model frameworks studied by Hartford and Davidian (2000).
We thus examined the robustness of the parameter estimates
in model (1) against violations of the assumptions made for
the individual-level random effects in a simulation study.

Starting with gi0 ∼ F , we chose git = γgi(t−1) + εit where
the εit ’s were i.i.d. and had the same distribution F in model
(1). We then fit the log likelihood under the assumption of a
multivariate normal distribution for the git ’s with correlation
structure (2). We computed means over 100 simulations with
µ = −2, β = 1, σ2

a = 1, γ = 0.5, σ2
g = 1, and n0 = n1 = 200,

for two choices of distribution F.
First, we simulated the random effects using F = t(k),

a t-distribution with k degrees of freedom. For k = 2 de-
grees of freedom, the estimates for the parameters in model
(1) were β̂ = 1.01(0.29), µ̂ = −2.07(0.53), σ̂2

a = 0.85(1.31),
γ̂ = 0.60(0.14), and σ̂2

g = 4.13(7.77). For a t-distribution

with 3 degrees of freedom, we obtained β̂ = 1.10(0.35)
and µ̂ = −2.23(0.63), σ̂2

a = 1.13(1.67), γ̂ = 0.52(0.28), and
σ̂2
g = 2.10(4.11). When the number of degrees of free-

dom was increased to 10, we observed β̂ = 1.09(0.40) and
µ̂ = −2.18(0.75), σ̂2

a = 1.11(2.03), γ̂ = 0.54(0.27), and σ̂2
g =

2.34(5.99).
To study the behavior of the model when the random-

effects distribution is skewed, we let F be an exponential
distribution that we centered by its mean. For an
exponential distribution with parameter 1, the estimates were
β̂ = 1.11(0.46) and µ̂ = −2.30(0.90), σ̂2

a = 1.24(3.62), γ̂ =
0.55(0.24), and σ̂2

g = 3.11(11.18). For an exponential distri-
bution with parameter 0.2, the estimates were β̂ = 1.04(0.28)
and µ̂ = −2.18(0.53), σ̂2

a = 0.93(1.00), γ̂ = 0.57(0.25), and
σ̂2
g = 2.20(3.25).
For one simulation we used g ′

it ’s from a Gaussian AR(1)
process in model (1) to generate the data but fitted a logistic
regression model involving only the parameters β, µ, and σ2

a.
The estimates obtained in this situation were β̂ = 0.88(0.11),
µ̂ = −1.70(0.12), and σ̂2

a = 1.01(0.19).
Our simulation study thus showed that ignoring the

individual-level random effects completely resulted in a sim-
ilar bias in the parameter estimates as when the individual-
level random effects came from a heavily skewed distribution
but were modeled as multivariate normal. Misspecification of
the distribution of underlying random effects in our design
therefore does not lead to serious bias in the parameters in
most situations that are of practical relevance.

5. Example
We applied the case-cohort design to data from the Home Al-
lergen Study. We used a sample of 398 children with complete
information for the 5 years of follow-up for our example. The
outcomes were the presence/absence of wheeze or asthma at
prespecified observation times for each child in the study. The
follow-up began when children were born, with closer spaced
observation times when the children were young, for exam-
ple, every 2 months during the first 2 years of life, every 6
months from age 2 to age 5 years, and more spread as the
children grew older, for example, once every year from age
5 years on. All the children in our data set were born between
1994 and 1996. We used data on the children between ages 0
and 5 years, with 18 observations on each child, corresponding
to a total number of 7164 observations.

There were 716 events during the study period, and the
number of events per child ranged from 0 to 12. One hundred
and forty-seven (36.9%) children never experienced asthma or
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wheezing, 93 (23.4%) had exactly one event, and 4 children
experienced 10 or more events.

We studied the effects of the presence of cats in the house
and endotoxin levels measured from dust samples taken from
the main living areas of the child’s home on disease risk. A
case-cohort design is possible in this setting since dust sam-
ples can be collected and stored for later endotoxin assay.
The covariates we considered were indicator variables X1 = 1
if there was a cat in the home and 0 otherwise, and two in-
dicators for endotoxin exposure, X2 = 1 for endotoxin levels
in the second tertile, X2 = 0 otherwise, and X3 = 1 for en-
dotoxin levels in the highest tertile, X3 = 0 otherwise. The
lowest tertile for endotoxin levels was the reference group.
To assess whether early childhood exposures to aeroallergens
may play a role in allergic sensitization and in the develop-
ment and exacerbation of asthma later in life, we included
interaction terms of endotoxin levels and an indicator vari-
able that was one for children older than 12 months in the
model.

We fit model (3) to the full cohort of 398 children, and then
sampled 100 children into the control-cohort and 100 children
who had reported wheezing at least once into the case-cohort,
and computed estimates based on the case-cohort design. The
g′it ’s were modeled using an AR(1) process with correlation
structure (2), taking into account the different spacings of
the observation times. The subject-specific random effects ai

were assumed to follow a normal distribution with mean 0.
The estimates were calculated using a Monte Carlo sample
size of 1000.

The estimates and their standard errors are given in
Table 3. Both analyses give similar results, and the efficiency
of the case-cohort design is on average 65% while using half
the sample size of the full cohort analysis. The case-cohort de-
sign yielded the log odds estimates 0.95 for cats, 0.34 for the
second tertile of endotoxin exposure, and 0.41 for the high-

Table 3
Estimation results of µ, σ2

a, β, σ2
g , and γ for children from

the Home Allergen Study (with standard errors in
parentheses)

Longitudinal
case-cohort

Parameter Cohort analysis design

µ −4.04 (0.29) −3.94 (0.37)
Cat in house 0.60 (0.24) 0.95 (0.31)
Endotoxins,

first tertile (E1) 0.00 (baseline) 0.00 (baseline)
Endotoxins,

second tertile (E2) 0.55 (0.28) 0.34 (0.38)
Endotoxins,

third tertile (E3) 0.44 (0.28) 0.41 (0.37)
E1 ∗ (age ≥ 12 months) 0.36 (0.23) 0.25 (0.28)
E2 ∗ (age ≥ 12 months) −0.16 (0.23) −0.22 (0.29)
E3 ∗ (age ≥ 12 months) −0.17 (0.23) −0.44 (0.30)
σ2
a 1.71 (0.41) 0.93 (0.51)

σ2
g 3.06 (0.57) 3.24 (0.68)
ρ 0.74 (0.05) 0.85 (0.05)

Log likelihood −2083.19 −1209.81

est tertile. The estimate of the random-effects variances were
σ̄2
α = 0.93 with a standard error of 0.51 and σ̄2

g = 3.24 with a
standard error of 0.68. The estimate of γ was 0.85 with a small
standard error of 0.05. The log odds estimates based on the
full cohort were 0.60 for cats in the house, 0.55 for the second
tertile of endotoxin exposure, and 0.44 for the highest tertile.
The interaction terms were not statistically significantly dif-
ferent from 0, but indicated that early childhood exposure to
endotoxin may have a protective effect at older ages. This is
consistent with the scientific literature (see Litonjua et al.,
2002). Efficiency of the estimates ranged from 54% for the
second tertile of endotoxins to 100% for γ. The average effi-
ciency for the case-cohort design was 66% for half the number
of samples.

The large estimates of σ2
g for both models indicate that

intra-individual correlation should not be ignored in the
analysis of these data.

6. Discussion
We propose a longitudinal case-cohort design that consists of
taking a subsample from the cohort at the beginning of the
follow-up period, and a sample of the cases over the course of
the study. This design can significantly reduce cost and effort
of exposure assessment in epidemiologic cohort studies, while
providing encouragingly efficient estimates of measured risk
factors. It is most beneficial when a large part of the study
cost is in exposure measurement compared to ascertainment
of individuals. If the main cost is in ascertainment, a full co-
hort analysis might be the more sensible approach to analysis.
While in the case-cohort design of Prentice (1986) efficiency
of the estimates is nearly 100%, the efficiency of our design for
log odds estimates was found to be up to 83% with 50% sav-
ings in sample size. Our design is slightly less efficient because
first, we do not observe all events that occur in the cohort,
and second, we are not in the situation of such rare outcomes,
where the cases and a reasonable number of controls provide
nearly all the information in the sample. The outcomes in the
longitudinal settings for which we believe our design to be use-
ful are slightly more common, like asthma attacks, and thus
one gains less by oversampling the cases than in a situation
of extremely rare outcomes, for example, cancer.

Different correlations between observations on the same
individual are accommodated by a two-level random-effects
model. One random effect, a, captures between individual
variation, and the other random effects, gt , t = 1, . . . , T , al-
low intra-individual correlations across time to vary. We in-
troduced a novel application of the bootstrap to test σ2

g = 0
in the presence of unidentifiable nuisance parameters. A sim-
ulation study indicated that misspecification of the distribu-
tion of underlying individual-level random effects in modeling
binary disease outcomes did not lead to serious bias in the
model parameters.

We show how our design relates to the bidirectional
crossover design by Navidi (1998). The basic difference
aside from introducing the control-cohort is that we condi-
tioned the distribution of the cases on the exact ascertain-
ment and allow for different correlations of the observations
by using a two-level random-effects model for binary out-
comes on the same individual over time. In related work,
Dewjani and Moolgavkar (2000) presented a Poisson process
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formulation for studying the association between environmen-
tal covariates and recurrent events. In the case of a single fail-
ure for each subject their likelihood coincides with the like-
lihood for case-crossover design (Navidi, 1998). Other recent
work on environmental covariables has focused on the use of
generalized additive models for investigating associations be-
tween air pollution measurements and daily counts of events
such as hospital admissions (Schwartz, 1994; Moolgavkar,
2000).

A complication of our design that is also shared by the case-
cohort or the nested case-control design, is that covariates of
the cases only become available after the event of interest has
occurred. This makes the design impractical for situations
where internal time-varying covariates or time-lagged covari-
ates are relevant. However, in many applications, it is possible
to determine at time after failure what an individual’s levels of
exposure were at the times before failure, for example, using
serially stored specimens that can be evaluated when a person
has an event. A field of application where such covariate infor-
mation is available and that was the motivation for our work,
is the investigation of air pollutants and respiratory illnesses.
Increasing attention is being paid to the potential for urban
air toxins and pollutants to exacerbate asthma, through in-
duction of specific or nonspecific airway hyperreactivity, or of
reactive airways dysfunction syndrome. Individual hypersen-
sitivity to specific substances may also play a role. A related
example is a study, still in the design phase, that addresses
the question of prediction of asthma attacks based on knowl-
edge of an individual’s susceptibility to pollen. The covariate
of interest in this situation is the interaction of sensitivity of
a person to a specific pollen and pollen count in an area at
a given time. Pollen count data are available from external
sources and a skin test is used to determine individual sen-
sitivity. If the longitudinal case-cohort design were used as a
study design, one could also estimate the main effect for sen-
sitivity that is constant over time and thus can be estimated
neither from the bidirectional crossover design nor from the
conditional panel design.

Another example where biospecimens were sampled and
stored for later evaluation was described by Park and Kim
(2004). For a study of the association of diarrhea and the
presence of Enterotoxigenic Escherichia coli (ETEC) in chil-
dren in South Korea, stool samples or rectal swabs were
collected daily by the children’s parents. However, identifi-
cation of children with ETEC infection requires costly and
time-consuming laboratory testing and the number of diar-
rhea cases was small compared to the number of repeated
measurements. Our case-cohort design would provide a cost-
effective way to obtain estimates of the effect of ETEC on
diarrhea risk in this setting. Other potential applications
of our design include genetic testing of serum samples that
are often collected at baseline in cohort studies to assess
the impact of gene–environment interactions on repeated
outcomes.
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